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ANY LINK HAS A DIAGRAM WITH ONLY TRIANGLES AND
QUADRILATERALS

REIKO SHINJO AND KOKORO TANAKA

Dedicated to Professor Kouki Taniyama on the occasion of his 60th birthday

ABSTRACT. A link diagram can be considered as a 4-valent graph embedded in
the 2-sphere and divides the sphere into complementary regions. In this paper,
we show that any link has a diagram with only triangles and quadrilaterals.
This extends previous results shown by the authors and C. Adams.

1. INTRODUCTION

A link diagram can be considered as a 4-valent graph embedded in the 2-sphere
and divides the sphere into complementary regions. Given a reduced connected
diagram D, let p,, (D) be the number of n-gons of all the complementary regions of
D for each n > 1. Note that p; (D) = 0, since D is reduced. It follows from Euler’s
formula and some elementary observations that we have the following equation

(1) 2p2(D) + p3(D) = 8 + ps(D) + 2pe(D) + 3p7(D) + -+,

in which py(D) does not appear.

In graph theory, the converse direction has been investigated, dating back to [3].
Griimbaum [4] proved that any sequence {p;, }n>2 n4 of nonnegative integers with
p2 = 0 that satisfies Equation (1) can be realized as a planar 4-valent 3-connected
graph such that the number of its n-gon regions is p, for all n # 4. This theorem
is known as Eberhard’s theorem. We note that the condition ps = 0 is a typical
assumption in graph theory, since the 1-skeletons of convex polytopes are of interest
as these graphs on the 2-sphere. We also note that a convex 3-polytopal 4-valent
graph is nothing but a connected reduced link projection without bigons. Then
Jeong [5] extended this result to show that the resulting graph can be taken as a
knot projection rather than a link projection.

In this paper, we investigate such a problem for link diagrams; which sequence
{Pn}n>2nza of nonnegative integers that satisfies Equation (1) can be realized as
a diagram of every link such that the number of its n-gon regions is p, for all
n # 47 This is a continuation of the study of complementary regions of knot and
link diagrams by the authors and Adams in [2]. In that paper, we introduced and
investigated the notion of universal sequences for knots and links, which will be
reviewed and discussed in Section 3 of this paper. See the original paper [2] or the
survey [1, Chapter 10] for more details about universal sequences. Main purpose
of this paper is to show the following theorem and its corollary.
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2020 Mathematics Subject Classification. Primary 57K10.
Key words and phrases. Knot diagram; complementary region; 4-valent graph.
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2 REIKO SHINJO AND KOKORO TANAKA

Theorem 1.1. Any sequence {pp }n>2n24 of nonnegative integers with ps = 0 that
satisfies Equation (1) and any link L, there exists a diagram Dy, of L such that

pn(Dp) = pp for all n # 4.

Since the sequence py = 0, p3 = 8 and p, = 0 (n > 5) satisfies the assumption
of Theorem 1.1, we have the following, which is the title of this paper:

Corollary 1.2. Any link has a diagram with only eight triangles and quadrilaterals.
Theorem 1.1 follows from Theorem 1.3, whose proof will be given in Section 2.

Theorem 1.3. Let P be a knot projection with the part as shown in Figure 1, where
the numbers from 0 to 2 indicate the order in which the arcs are traced. Then any
link L has a diagram Dy, such that p,(Dr) = pn(P) for all n # 4.

1 2

|
T

FIGURE 1. A part of a knot projection consisting of three strands

Proof of Theorem 1.1. Let {py, }n>2n4 be a sequence of nonnegative integers with
p2 = 0 that satisfies Equation (1). It was shown in [5] that there exists a choice
of p4 and a knot projection P such that p,, (P) = p, for all n > 2. The proof was
inductive and constructive. We recall here a rough outline of the proof in [5]. Start
with the knot projection Py in Figure 2. It is made up of eight triangles and three
quadrilaterals, and has the part as shown in Figure 1; see the right of Figure 2. By
performing some local operations for Py repeatedly outside the part as shown in
Figure 1, the knot projection Py can be changed into the desired knot projection P,
which also has the the part as shown in Figure 1. Thus Theorem 1.3 can be applied
for P and hence any link L has a diagram Dy, such that p, (D) = p,(P) = p,, for
all n #£ 4. O

A ft-

FIGURE 2. Jeong’s knot projection Py

Although some readers may wonder if it is possible to remove the assumption
p2 = 0 from Theorem 1.1, we think that it is an issue in the future. This is because,
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in order to use Theorem 1.3, we have to extend the result by Jeong [5] without the
assumption ps = 0, however, it may be difficult at this time. Instead, for example,
it is possible to prove the following for the sequence po = 2,p3 = 4 and p,, = 0
(n > 5) which satisfies Equation (1).

Proposition 1.4. Any link has a diagram with only two bigons, four triangles and
quadrilaterals.

Proof. Take a knot projection P; as in the left of Figure 6 so that ps(Py) = 2,
p3(P1) = 4 and p,(P1) = 0 for all n > 4. Since P; has the part as shown in
Figure 1, Theorem 1.3 can be applied for the projection P;, and hence any link L
has a diagram Dy, such that p, (D) = p,(P1) for all n # 4, that is, pa(Dyr) = 2,
p3(Dr) =4 and p,(Dr) =0 for all n > 5. O

Throughout this paper, we use the fact that any diagram can be made a diagram
of the unknot by crossing changes. Equivalently, we can make any knot projection
into a diagram of the unknot by giving crossing information appropriately. In fact,
we can say a little stronger assertion, which will be used later.

Lemma 1.5. Let Q be a knot projection. If the number of crossings of @ is even
(resp. odd), then there exists a diagram Dg of the unknot whose underlying projec-
tion is Q and whose writhe is 0 (resp. +1).

Proof. Induction on the number of crossings. ([

2. PROOF OF THEOREM 1.3

Lemma 2.1. Let P be a knot projection with the part as shown in Figure 1, where
the numbers from 0 to 2 in the figure indicate the order in which the arcs are traced.
Then there exists a knot projection Q for any integer N > 3 with the part as shown
in Figure 3 such that p,(Q) = pn(P) for any n # 4, where the numbers from 0 to
N in the figure also indicate the order in which the arcs are traced.

FIGURE 3. A part of a knot projection consisting (N + 1)-strands

Proof. Let Q1 be an N-parallel copies of P so that p,(Q1) = p,(P) for all n # 4.
Let Q2 be a knot projection obtained from @, by replacing a part of @), which
corresponds to the N-parallel copies of Figure 3, with the part as in the top of
Figure 4, where it depicts the case N = 3. When we ignore quadrilaterals, regions
of Qo are almost identical to those of P. The exact differences are as follows: each
of the two shaded regions of Qs in the top of Figure 4 has one more edge than
the corresponding region in P, and has a newly created triangle next to it. Let Q
be a knot projection obtained from (s by creating a pair of two kinks as in the
middle of Figure 4, and aligning them along with ()2 as in the bottom of Figure 4.
More precisely, the upper kink goes out from 0 and returns back into 1, and the
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lower kink goes out from 2 and returns back into 0, where each number from 0 to
2 indicates a set of parallel strands of (5 corresponding to the strand labelled by
the number in Figure 3. Then we have p,(Q) = p,(P) for all n # 4. Moreover the
knot projection ) has the part as in Figure 3; see the bottom right of Figure 4.
Hence the knot projection @ is a desired one. O

~

FIGURE 4. How to make () from P for the case N =3

Proposition 2.2. Let L be a link, and Q a knot projection with the part as shown
in Figure 3 for sufficiently large N depending on L, where the numbers from 0 to N
in the figure indicate the order in which the arcs are traced. Then L has a diagram

Dy, such that pp,(Dyr) = pn(Q) for any n # 4.

Proof. Take a closed quasitoric braid diagram D of the link L, where a quasitoric
braid is a braid obtained by changing some subset of the crossings in a toric braid.
We note that every link can be realized as the closure of a quasitoric braid [6].
When the quasitoric braid diagram D; for L is of type (p,q), we take N so that
N > p+q and a knot projection @ as in the statement. We discuss the cases where
the number of crossings of @ is odd and even.
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Case 1. Consider the case where the number of crossings of @) is even. It follows
from Lemma 1.5 that there exists a diagram Dg of the unknot whose underlying
projection is () and whose writhe is 0. Align the closed quasitoric braid diagram
D, along with the diagram Dg of the unknot such that quasitoric braid parts are
arranged as in the top of Figure 5, where it depicts the case (p,q) = (3,2), and
denote the diagram obtained from D; by D,. Since the writhe of Dg is zero,
the diagram Dy represents the link L. When we ignore quadrilaterals, regions of
Dy are almost identical to those of ). The exact differences are as follows: each
of 2¢ shaded regions of Dy in the top of Figure 5 has one more edge than the
corresponding region of ), and and has a newly created triangle next to it. Create
q pairs of two kinks for Dy as in the middle of Figure 5 such that

e the first pair consists of a kink adjacent to the first shaded region from the
right on the upper and that adjacent to the first shaded region from the
left on the lower,

e the second pair consists of a kink adjacent to the second shaded region from
the right on the upper and that adjacent to the second shaded region from
the left on the lower,

e the (¢— 1)-st pair consists of a kink adjacent to the (¢ — 1)-st shaded region
from the right on the upper and that adjacent to the (¢ — 1)-st shaded
region from the left on the lower,

and

e the ¢-th pair consists of a kink adjacent to the ¢g-th shaded region from the
right on the upper and that adjacent to the g-th shaded region from the
left on the lower.

Then align the totally 2¢ kinks along with Dg as in the bottom of Figure 5 according
to the order such that

e the first kink from the right on the upper leaves from 0, go through from 1
to ¢ — 1, and returns to ¢, and then that from the left on the lower leaves
from 2, go through from 3 to ¢ + 1, and returns to 0,

e the second kink from the right on the upper leaves from 0, go through from
1 to ¢ — 2, and returns to ¢ — 1, and then that from the left on the lower
leaves from 3, go through from 4 to ¢ + 1, and returns to 0,

e the (¢ — 1)-st kink from the right on the upper leaves from 0, go through
1, and returns to 2, and then that from the left on the lower leaves from g,
go through g + 1, and returns to 0,

and

e the g-th kink from the right on the upper leaves from 0 and returns to 1,

and then that from the left on the lower leaves from ¢+ 1 and returns to 0,

where each number from 0 to ¢ + 1 indicates a set of parallel strands of Dy corre-
sponding to the strand labelled by the number in Figure 3. We denote the diagram
obtained from Dy by Dy, where crossing information concerning aligned kinks of
Dy, must be suitably chosen such that Dj represents the link L, in other words,
such that all aligned kinks of Dy, can be shrinked back to the original positions as
in the middle of Figure 5. Then we have p, (D) = p,(Q) for all n # 4, and hence
the diagram Dy, is a desired one.
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FIGURE 5. How to make D from D; for the case (p,q) = (3,2)

Case 2. Consider the case where the number of crossings of @ is odd. It follows
from Lemma 1.5 that there exists a diagram D¢ of the unknot whose underlying
projection is Q and whose writhe is +1. Suppose that the quasitoric braid diagram
D of the link L is the closure of a quasitoric braid b;,. Then take a closed quasitoric
braid diagram D) as the closure of the product of the two quasitoric braid by, and
b_1 = (0102 -0p—1)"P. We note that the product of two quasitoric braid is also
quaitoric [6]. We remark here that D} does not represent L, since the writhe of D¢
is +1. Align Dj along with D¢ such that quasitoric braid parts are arranged as in
the top of Figure 5, and denote the diagram obtained from D} by D5. Since the
writhe of Dg is +1 and the (quasitoric) braid b_; represents the (—1)-full-twist,
the diagram D, represents the link L. The rest of the proof is the same as for Case
1 and is therefore omitted. O

Proof of Theorem 1.3. It directly follows from Lemma 2.1 and Proposition 2.2. [

3. UNIVERSAL SEQUENCES

We discuss the relationship with the notion of universal sequences [2] introduce
by the authors and Adams. A strictly increasing sequence of integers (a1, az, as, . . .)
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with a; > 2 is said to be realized by a link if there exists a diagram for the link
such that each complementary region is an a,-gon for some a,, that appears in the
sequence. We note that not every a,, must be realized by a region. We say that a
sequence is universal® if every link has a diagram realizing the sequence. In [2], the
following were shown:

(n 2n 3n,...) is not universal for any n > 2 ([2, Theorem 2.3]),

(3, ..) is universal ([2, Theorem 3.1]),

(3 n,n —|— 1,m+2,...) is universal for any n > 4 ([2, Theorem 3.1]),
(2,n,n+1,n+2,...) is universal for any n > 3 ([2, Theorem 3.1]),
(3,4,n) is umversal for any n > 5 ([2, Theorem 3.2 and 3.3]), and
(2,4,5) is universal ([2, Theorem 3.4]).

Using Theorem 1.3, we can extend the last two results and thus give alternative
proofs for them. Note that Theorem 3.1 implies the fifth result above.

Theorem 3.1. The sequence (3,4) is universal.

Proof. This is a paraphrased assertion of Corollary 1.2. (]

Theorem 3.2. The sequence (2,4,2k + 1) is universal for any k > 2.

Proof. Take a knot projection Py as in the left of Figure 6 for each k& > 2 so that
p2(Py) =4k — 2, por+1(Pr) =4 and p,(Px) =0 (n #2,2k+1).

Since Py has the part as shown in Figure 1, Theorem 1.3 can be applied for the
projection Py, and hence any link L has a diagram Dy, such that p, (D) = p,(Px)
for all n # 4. Tt follows from p,(Py) = 0 for all n # 2,2k + 1 that p,(Dy) = 0 for
all n # 2,4,2k + 1. This implies that the sequence (2,4, 2k + 1) is universal. O

FIGURE 6. The knot projections P» and Py, (k > 2)
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